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Boundary effects in a random neighbor model of earthquakes
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We introduce spatial inhomogeneitié®oundariesin a random neighbor version of the Olami, Feder, and
Christensen modédPhys. Rev. Lett68, 1244(1992] and study the distributions of avalanches starting both
from the bulk and from the boundaries of the system. Because of their clear geophysical interpretation, two
different boundary conditions have been considénetnedree andopen respectively. In both cases the bulk
distribution is described by the exponent % Boundary distributions are instead characterized by two differ-
ent exponents-’:g andr'= %, for free and open boundary conditions, respectively. These exponents indicate
that the mean-field behavior of this model is correctly described by a recently proposed inhomogeneous form
of the critical branching procesgS1063-651X98)06803-3

PACS numbe(s): 64.60.Lx, 64.60.Ht, 05.46:]

Some ten years ago Bak, Tang, and Wiesent8ldW) (E <E., Vkl). The uniform growth then starts again.
introduced the concept of self-organized criticaliyO0  Boundary conditions imply that sites close to boundaries of
[1]. The term refers to the tendency of a large class of exthe system have a smaller coordination nunfegcept in the

tended dynamical systems to spontaneously organize into Griodic caspand, in principle, also a different value for
dynamical critical state characterized by long range correla

tions, in both space and time. Many models displaying SOCgaBC)' OEen br(?undbary condfmonﬁ are ggngrzillly Sit' In lth!s
have been introduced and used to describe, for instanc%?seaBC_ a The a Sence ol a ¢ a'racter|st|c engt scaie in
sandpileg 1], earthquake$2], and biological evolutio3]. e System is reflected in the behavior of the probabRifg)
The common feature of all these models is the simplicity ofthat an earthquake involvessites. Indeed, in the stationary
the local dynamical rules, to be contrasted to the global comstate,P(s)=s™", wherer is a critical exponent.
plex structureqe.g., fractal that emerge as a result of the ~ Contrary to the BTW sandpile modgf], the OFC model
continued local interactions. A model that has recently atis believed to be self-organized critical even when the dy-
tracted much attention in the literature is that proposed by)amics is nonconservingy< 3) [2,4-6]. In a sense this is a
Olami, Feder, and Christensé®FC) [2], to mimic earth-  rather surprising, not yet fully understood result, which pos-
quake dynamics. This model has revealed itself to be particusibly implies a peculiar mechanism leading to SOC, different
larly challenging to understand and has raised many fund&rom that of conserved models. Moreover, the avalanche dis-
mental questions on the very nature of SCXA-§. tribution exponentr is nonuniversal: it seems to depend on
The OFC model is a coupled-map lattice model, wherehe conservation parameterand even on the type of bound-
with each site {,j) of a square lattice, there is associated aary conditions[2]. One of the peculiarities of this model is
continuous “energy”E;; , initially fixed at a random value  the role played by boundaries. Besides being “sinks” for the
in the interval (OE¢). All the energies are increased uni- energy in excess in the systefwhich, moreover, can be
formly and simultaneously at the same speed, until one ofjissipated even in the bulk, due to the nonconserving dynam-
them reaches the threshold valig and becomes unstable jcq) they act as inhomogeneities that frustrate the natural
(Eij=Ec). The uniform driving is then stopped and an tengency of the model to synchronize. This is believed to be
earthquake” starts: the fundamental mechanism producing SOC in this system
[5,6]. Indeed, it has been shown that, with periodic boundary
E =E.— Eij—0 1) conditions and for sufficiently small values of the conserva-
M T En— Ennt aEy tion parametere (@=0.18), the system reaches a strictly
periodic state, in which each avalanche involves just one site
) L [4—6]. For larger values ofr the situation is slightly more
wherenn denotes the set of nearest-neighbor sitesigf) ( complicated with multiple topplings involved in a single
anda e[0,3] is a parameter controlling the level of conser- avalanche, but the avalanches are still localized and critical-
vation of the dynamicsd4= 3 corresponds to the conserva- ity is not observed. Open boundaries create a discontinuity
tive case. The “toppling” rule (1) can possibly produce a in a homogeneous system and break the periodic state it
chain reaction, which ends when all sites are stable agaiwould otherwise reach. In Rgi6] it was suggested that sites
close to the boundaries start to organize themselves first,
building up long range correlations. The critical region
*Electronic address: lise@shannon.sissa.it grows with time until, in the stationary state, it invades the
Electronic address: stella@padova.infn.it whole lattice.

1063-651X/98/5{3)/36334)/$15.00 57 3633 © 1998 The American Physical Society



3634 BRIEF REPORTS 57

Despite the simplicity of local dynamical rules in SOC E>E. in columni topples, it distributes an energyE to
systems, analytical approaches have rarely been successfulo randomly chosen sites, one in coluinal and another
(for an exception, see, e.g., RE]). This applies, in particu- one in columni+1. Moreover, an energyE is also re-
lar, to models of the OFC type. Most of the results aChieve(teived by two rand0m|y chosen sites in columim this way
so far have been obtained through computer simulations. Tghe notion of position along the direction perpendicular to the
overcome this limitation it has sometimes been useful to congglumns acquires a meaning and the effect of the boundaries
sider random neighbdRN) models[9—-11], where each site (|qcated at columns 0 arld+ 1) can propagate into the sys-

interacts with randomly chosen sites instead of its neareghm At the same time. the random choice of sites within

neighbors on the Iattyge. This conS|dere}ny simplifies theyq,mns should guarantee that we are dealing with an inho-
problem, though retaining some essential features of th

ﬁwogeneous mean-field model. The set of all columns be-

original model. Moreover, RN models can be seen as mean- - oo . :
field descriptions of their nearest-neighbor counterpart%:\r/]z\sli;chnﬂ;';i ggaéitglé?eg?:rzizsllirrf1ri?m which bulk

since spatial correlations are neglected. o . .
The RN versions of the BTW sandpile modé] and the Boundary 'condmons are detgrmlned_by setting the level
Bak and SneppefiBS) evolutionary mode[3] have been of conservation of the _dynamlc& at sites close to the
solved exactly in Ref[9] and Ref.[10], respectively. The boundaries ¢gc). Two different possibilities are suggested
solutions show that these models become equivalent to BY the Burridge-Knopoff model of earthquakiést]: (a) free
critical branching process. Accordingly, the avalanche sizéoundary conditions, in whiclxgc=a/1—«a and (b) open

distribution exponent is= 2. boundary conditions, in whichagc=a. The Burridge-
The RN version of the OFC modg@l1] is described by Knopoff model is a driven spring-block model, which can be
the following toppling rule: directly mapped into the OFC modg2]. It can be schema-
tized as a two-dimensional network of blocks interconnected
E —E o Ei;—0 by spr_ings. In additio'n, all the blocks are subject tp an gxter—
ij= Ern—Emn+aE;, nal driving force, which pulls them, and to a static friction,

which opposes their motion. The case of free boundary con-
wherern stands for four sites chosen randomly in a finite ditions corresponds to boundary blocks connected only to

lattice box. Open boundary conditions are implemented by?!0cks belonging to the system. The case of open boundary
requiring that sites at the box boundary can collect an infinit&Eonditions, instead, corresponds to blocks at the boundary
amount of energy without toppling. In this model all bulk couPled also to an imaginary external bldsiee Ref{2] for

sites are equivalent and, therefore, no geometrical meanirfq_rther details. Although both of them are probably not re-
can be attached to boundaries. alistic, it is believed that more adequate boundary conditions

A numerical investigation of this version of the RN OFC Should somehow interpolate between these two extreme lim-

model gave evidence that in the stationary state avalanchdi$ [15]- Note, moreover, that free boundary conditions are
are power law distributed in a whole range @fvalues @ more conservative than open ones and become strictly con-
<a=<1/4; a,=0.225), with an exponent=3/2. These rce- servative fora=3. Below we will show that this distinction
sults have been quesiioned by some recent works aimed at leads to a radical difference in the distributions of avalanches

exact analytical control of the RN modid2,13. By study-  Propagating from the borders of the chain.
ing a continuum-time equation it was deduced that ava- We performed extensive numerical simulations in order to

lanches are localized as soon @s 1/4, although the mean sample bulk and boundary avalanche size distributions. The
avalanche size grows exponentially fast as dissipation tend&!lk avalanche distribution of the system appears not to be
to zero. Anyway, as far as the description of boundary effectéifected by the choice of boundary conditions. Figures 1

is concerned, this approach is even less satisfactory. In fa@nd 4a) report the results in the conservative case (

no “boundary” dissipation is explicitly introduced in Refs, —0-25) for free and open boundary conditions, respectively.
[12,13, which, strictly, would make the system “explode” Only avalanches starting from the deep interior of the lattice
in the conservative limit ¢— 1/4). have been taken into account in the statistics. As a matter of

The main purpose of the present work is that of providingfaCt: bulk behavior is also easily extracted upon, e.g., aver-
a formulation in which the OFC model is still of a RN na- ading the avalanche distribution over all possible starting
ture, while allowing a meaningful distinction between the €olumns in the lattice. The estimated exponents are
boundary and bulk of the system. This formulation, which=1-457=1.45+0.1 and 7=1.5+0.1 for free and open
can be handled numerically, is worth analyzing in view of oundary conditions, respectively. In both cases they are
the important role boundary inhomogeneities are expected gonsistent with the usual mean-field one, i=3. In con-
play in the nearest-neighbor OFC model. Moreover, oufrast, avalanches star.tlng from the borders, |_.e.,fr0m columns
model, introducing the notion of position in the system, con-1 Or L, are strongly influenced by the choice of boundary
stitutes a substantial improvement of the standard RN onéonditions. Boundary avalanches are distributedP4s)
just like a Landau-Ginzburg approach compared to the Weisgs™ 7, where 7' =1.4+0.1 for free boundariefFig. 1(b)]
theory of ferromagnetism. and7’=1.75+0.1 for open boundarig$ig. 2(b)]. We have

In order to introduce a proper inhomogeneity due toalso checked that boundary conditions interpolating between
boundary effects, we have proceeded as follows. We haviee and open behave as the open case,d.es1.75. In this
considered the 2D system as divided into columns, say fromespect 7' =1.75 reflects a more robust behavior of the
1 toL (each column has two “boundary” sites, which are model, appropriate to any nonzero level of dissipation real-
never allowed to discharge When a site with energy ized at the border.
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FIG. 1. Simulation results fofa) bulk and(b) boundary ava- FIG. 2. Results for(a) bulk and(b) boundary avalanches in a

lanches in a system with free boundary conditions. The system sizeystem with open boundary conditions. System size hre
is L=100 and the conservation parameterais-0.25. The esti- =100,200 and the conservation parameteis0.25. The esti-
mated exponents af@) 7=1.45+0.1 and(b) 7' =1.4+0.1. mated exponents af@) 7=1.5+0.1 and(b) 7' =1.75+0.1.

F|na”y we have verified that the introduction of bulk dis- boundary conditions. ThUS, free conditions here seem ad-
sipation (@<<1/4) has no apparent effect on bulk and bound-gquate to keep at its critical bulk valiee., 1) the average
ary exponents, as long as> a, as determined in Ref11].  ymper of descendants for each generations occurring at the
However, it is controversigl12,13 whether fora<<1/4 the  porger, in the branching process underlying earthquake dy-
model should be considered critical. An apparent criticality,, 5 mics.
could result numerically from finite size effects. In conclusion, we have shown how it is possible to intro-

Our results indica’ge_ that_ the mean-field QFC model .Withduce proper boundary effects at the level of a RN OFC
open boundary conditions is correctly described by an inho-

) : L model. The model we have considered can also be inter-
mogeneous branching procelss]. This generalization of . o

. reted as a 1D nearest-neighbor model witke ‘tompo-
the standard branching process has been recently propos@ae . N :
and studied as a paradigm for a more complete description nts.” Indeed, the energies in a given column can be
SOC models in the mean-field limit. The inhomogeneoudnPudht of as the many components of an energy vector as-
branching process takes place in a situation in which transS0ciated to a single site of a 1D chain. Since we have always
lation invariance is broken. An example is given by the ge-considered very largd, our approach effectively corre-
ometry of a semi-infinite chain. Each site of the chain in-SPonds to a°-components limit of the 1D model.
volved in the process at a given stage of the process can We have verified that, with open boundary conditions,
activate its neighborgand/or reactivate itselfat the subse- boundary avalanches in the OFC model are distributed as
quent stage with well defined probabilities. The probabilityP(s)=s™ "', as predicted by the analysis of the inhomoge-
of generating a tre€or avalanchg with s individuals be- neous branching process. Free boundary conditions, instead,
comes a function of the positiam=1, . . . .o where the tree correspond to “conservative” boundary conditions in the in-
starts along a chain. It was shown exactly in H&6] that homogeneous branching process and imydhg 7=3/2.
critical trees(avalanchesstarting from the boundary are dis-  As a prospective for future work, it would be interesting
tributed asP,(s)=s™ ", with ' =2, different from the bulk  to investigate whether the mechanism of invasion from the
exponentr= 2. Boundary sites were identified there as sitesboundaries of the “self-organized” regiohamed “phase
with an average number of branchings smaller thgii7], locking” in Ref. [6]) is actually present also in the random
reflecting in this way a sort of dissipative behavior. In this neighbor OFC model with boundaries. We expect that also in
respect open boundary conditions in our model correspond tthe nearest-neighbor OFC model, boundary scalings different
the existence of these “dissipative” boundaries of the inho-from the bulk ones should be observed with appropriate con-
mogeneous branching process. On the other hand, if the aditions at the borders.
erage number of branchings is maintained equal to 1 for all
sites of the chairfincluding the enyl it is possible to verify
numerically that, in the inhomogeneous branching process, We acknowledge Claudio Tebaldi for many useful con-
the exponentr’ coincides with the bulk ongi.e., 7' =3) versations on the subject and for a critical reading of the
[18]. This case seems to be realized by our model with freenanuscript.



3636 BRIEF REPORTS 57

[1] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. L8&.381 4087(1993; J. de Boer, B. Derrida, H. Flyvberg, A. D. Jack-
(1987; Phys. Rev. A38, 364 (1988. son, and T. Wettingibid. 73, 906 (1994).

[2] Z. Olami, H. J. S. Feder, and K. Christensen, Phys. Rev. Lett[11] S. Lise and H. J. Jensen, Phys. Rev. Le&.2326(1996.
68, 1244(1992; K. Christensen, and Z. Olami, Phys. Rev. A [12] M. L. Chabanol and V. Hakim, Phys. Rev. &6, R2343

46, 1829(1992. (1997.
[3] P. Bak and K. Sneppen, Phys. Rev. L&tt, 4083(1993. [13] H. M. Broker and P. Grassberger, Phys. Rev5& 3944
[4] J. E. S. Socolar, G. Grinstein, and C. Jayaprakash, Phys. Rev. (1997.
E 47, 2366(1993. [14] R. Burridge and L. Knopoff, Bull. Seismol. Soc. A7, 341
[5] P. Grassberger, Phys. Rev4B, 2436(1994). (1967.
[6] A. A. Middleton and C. Tang, Phys. Rev. Let4, 742(1995. [15] K. Christensen and Z. Olami, J. Geophys. R8g, 8729
[7] S. S. Manna, L. B. Kiss, and J. Kerges). Stat. Phys1, 923 (1992.
(1990. [16] G. Caldarelli, C. Tebaldi, and A. L. Stella, Phys. Rev. L&8.
[8] D. Dhar, Phys. Rev. Lett64, 1613 (1990. See also E. V. 4983(1996.
Ivashkevich, D. V. Ktitarev, and V. B. Priezzhev, J. Phys. A [17] In the critical branching process bulk sites give rise on average
27, L585 (1994). to exactly one branch within an avalanche. See T. E. Harris,
[9] K. Christensen and Z. Olami, Phys. Rev4B 3361(1993. The Theory of Branching Process@over, New York, 1988

[10] H. Flyvbjerg, K. Sneppen, and P. Bak, Phys. Rev. Léft.  [18] E. Montevecchi and A. Stell&o be published



