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Boundary effects in a random neighbor model of earthquakes
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We introduce spatial inhomogeneities~boundaries! in a random neighbor version of the Olami, Feder, and
Christensen model@Phys. Rev. Lett.68, 1244~1992!# and study the distributions of avalanches starting both
from the bulk and from the boundaries of the system. Because of their clear geophysical interpretation, two
different boundary conditions have been considered~namedfreeandopen, respectively!. In both cases the bulk
distribution is described by the exponentt. 3

2. Boundary distributions are instead characterized by two differ-
ent exponentst8. 3

2 andt8. 7
4, for free and open boundary conditions, respectively. These exponents indicate

that the mean-field behavior of this model is correctly described by a recently proposed inhomogeneous form
of the critical branching process.@S1063-651X~98!06803-2#

PACS number~s!: 64.60.Lx, 64.60.Ht, 05.40.1j
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Some ten years ago Bak, Tang, and Wiesenfeld~BTW!
introduced the concept of self-organized criticality~SOC!
@1#. The term refers to the tendency of a large class of
tended dynamical systems to spontaneously organize in
dynamical critical state characterized by long range corr
tions, in both space and time. Many models displaying S
have been introduced and used to describe, for insta
sandpiles@1#, earthquakes@2#, and biological evolution@3#.
The common feature of all these models is the simplicity
the local dynamical rules, to be contrasted to the global co
plex structures~e.g., fractal! that emerge as a result of th
continued local interactions. A model that has recently
tracted much attention in the literature is that proposed
Olami, Feder, and Christensen~OFC! @2#, to mimic earth-
quake dynamics. This model has revealed itself to be part
larly challenging to understand and has raised many fun
mental questions on the very nature of SOC@2,4–6#.

The OFC model is a coupled-map lattice model, wh
with each site (i , j ) of a square lattice, there is associated
continuous ‘‘energy’’Ei j , initially fixed at a random value
in the interval (0,Ec). All the energies are increased un
formly and simultaneously at the same speed, until one
them reaches the threshold valueEc and becomes unstabl
(Ei j >Ec). The uniform driving is then stopped and a
‘‘earthquake’’ starts:

Ei , j>Ec⇒H Ei , j→0

Enn→Enn1aEi , j ,
~1!

wherenn denotes the set of nearest-neighbor sites of (i , j )

andaP@0,1
4 # is a parameter controlling the level of conse

vation of the dynamics (a5 1
4 corresponds to the conserv

tive case!. The ‘‘toppling’’ rule ~1! can possibly produce a
chain reaction, which ends when all sites are stable ag
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(Ekl,Ec , ;kl). The uniform growth then starts again
Boundary conditions imply that sites close to boundaries
the system have a smaller coordination number~except in the
periodic case! and, in principle, also a different value fora
(aBC). Open boundary conditions are generally set. In t
caseaBC5a. The absence of a characteristic length scale
the system is reflected in the behavior of the probabilityP(s)
that an earthquake involvess sites. Indeed, in the stationar
state,P(s)}s2t, wheret is a critical exponent.

Contrary to the BTW sandpile model@7#, the OFC model
is believed to be self-organized critical even when the
namics is nonconserving (a, 1

4 ) @2,4–6#. In a sense this is a
rather surprising, not yet fully understood result, which po
sibly implies a peculiar mechanism leading to SOC, differe
from that of conserved models. Moreover, the avalanche
tribution exponentt is nonuniversal: it seems to depend o
the conservation parametera and even on the type of bound
ary conditions@2#. One of the peculiarities of this model i
the role played by boundaries. Besides being ‘‘sinks’’ for t
energy in excess in the system~which, moreover, can be
dissipated even in the bulk, due to the nonconserving dyn
ics!, they act as inhomogeneities that frustrate the natu
tendency of the model to synchronize. This is believed to
the fundamental mechanism producing SOC in this sys
@5,6#. Indeed, it has been shown that, with periodic bound
conditions and for sufficiently small values of the conserv
tion parametera (a.0.18), the system reaches a strict
periodic state, in which each avalanche involves just one
@4–6#. For larger values ofa the situation is slightly more
complicated with multiple topplings involved in a sing
avalanche, but the avalanches are still localized and criti
ity is not observed. Open boundaries create a discontin
in a homogeneous system and break the periodic sta
would otherwise reach. In Ref.@6# it was suggested that site
close to the boundaries start to organize themselves fi
building up long range correlations. The critical regio
grows with time until, in the stationary state, it invades t
whole lattice.
3633 © 1998 The American Physical Society
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Despite the simplicity of local dynamical rules in SO
systems, analytical approaches have rarely been succe
~for an exception, see, e.g., Ref.@8#!. This applies, in particu-
lar, to models of the OFC type. Most of the results achiev
so far have been obtained through computer simulations
overcome this limitation it has sometimes been useful to c
sider random neighbor~RN! models@9–11#, where each site
interacts with randomly chosen sites instead of its nea
neighbors on the lattice. This considerably simplifies
problem, though retaining some essential features of
original model. Moreover, RN models can be seen as me
field descriptions of their nearest-neighbor counterpa
since spatial correlations are neglected.

The RN versions of the BTW sandpile model@1# and the
Bak and Sneppen~BS! evolutionary model@3# have been
solved exactly in Ref.@9# and Ref.@10#, respectively. The
solutions show that these models become equivalent
critical branching process. Accordingly, the avalanche s
distribution exponent ist5 3

2.
The RN version of the OFC model@11# is described by

the following toppling rule:

Ei , j>Ec⇒H Ei , j→0

Ern→Ern1aEi , j ,

where rn stands for four sites chosen randomly in a fin
lattice box. Open boundary conditions are implemented
requiring that sites at the box boundary can collect an infin
amount of energy without toppling. In this model all bu
sites are equivalent and, therefore, no geometrical mea
can be attached to boundaries.

A numerical investigation of this version of the RN OF
model gave evidence that in the stationary state avalan
are power law distributed in a whole range ofa values (ac
<a<1/4; ac.0.225), with an exponentt.3/2. These re-
sults have been questioned by some recent works aimed
exact analytical control of the RN model@12,13#. By study-
ing a continuum-time equation it was deduced that a
lanches are localized as soon asa,1/4, although the mean
avalanche size grows exponentially fast as dissipation te
to zero. Anyway, as far as the description of boundary effe
is concerned, this approach is even less satisfactory. In
no ‘‘boundary’’ dissipation is explicitly introduced in Refs
@12,13#, which, strictly, would make the system ‘‘explode
in the conservative limit (a→1/4).

The main purpose of the present work is that of provid
a formulation in which the OFC model is still of a RN na
ture, while allowing a meaningful distinction between t
boundary and bulk of the system. This formulation, whi
can be handled numerically, is worth analyzing in view
the important role boundary inhomogeneities are expecte
play in the nearest-neighbor OFC model. Moreover,
model, introducing the notion of position in the system, co
stitutes a substantial improvement of the standard RN o
just like a Landau-Ginzburg approach compared to the W
theory of ferromagnetism.

In order to introduce a proper inhomogeneity due
boundary effects, we have proceeded as follows. We h
considered the 2D system as divided into columns, say f
1 to L ~each column has two ‘‘boundary’’ sites, which a
never allowed to discharge!. When a site with energy
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E.Ec in column i topples, it distributes an energyaE to
two randomly chosen sites, one in columni 21 and another
one in columni 11. Moreover, an energyaE is also re-
ceived by two randomly chosen sites in columni . In this way
the notion of position along the direction perpendicular to
columns acquires a meaning and the effect of the bounda
~located at columns 0 andL11) can propagate into the sys
tem. At the same time, the random choice of sites wit
columns should guarantee that we are dealing with an in
mogeneous mean-field model. The set of all columns
haves as a finite chain with boundaries, from which bu
behavior can also be extracted in theL→` limit.

Boundary conditions are determined by setting the le
of conservation of the dynamicsa at sites close to the
boundaries (aBC). Two different possibilities are suggeste
by the Burridge-Knopoff model of earthquakes@14#: ~a! free
boundary conditions, in whichaBC5a/12a and ~b! open
boundary conditions, in whichaBC5a. The Burridge-
Knopoff model is a driven spring-block model, which can
directly mapped into the OFC model@2#. It can be schema-
tized as a two-dimensional network of blocks interconnec
by springs. In addition, all the blocks are subject to an ex
nal driving force, which pulls them, and to a static frictio
which opposes their motion. The case of free boundary c
ditions corresponds to boundary blocks connected only
blocks belonging to the system. The case of open bound
conditions, instead, corresponds to blocks at the bound
coupled also to an imaginary external block~see Ref.@2# for
further details!. Although both of them are probably not re
alistic, it is believed that more adequate boundary conditi
should somehow interpolate between these two extreme
its @15#. Note, moreover, that free boundary conditions a
more conservative than open ones and become strictly
servative fora5 1

4. Below we will show that this distinction
leads to a radical difference in the distributions of avalanc
propagating from the borders of the chain.

We performed extensive numerical simulations in order
sample bulk and boundary avalanche size distributions.
bulk avalanche distribution of the system appears not to
affected by the choice of boundary conditions. Figures 1~a!
and 2~a! report the results in the conservative casea
50.25) for free and open boundary conditions, respective
Only avalanches starting from the deep interior of the latt
have been taken into account in the statistics. As a matte
fact, bulk behavior is also easily extracted upon, e.g., av
aging the avalanche distribution over all possible start
columns in the lattice. The estimated exponents aret
51.45t51.4560.1 and t51.560.1 for free and open
boundary conditions, respectively. In both cases they
consistent with the usual mean-field one, i.e.,t5 3

2. In con-
trast, avalanches starting from the borders, i.e., from colum
1 or L, are strongly influenced by the choice of bounda
conditions. Boundary avalanches are distributed asP(s)
}s2t8, wheret851.460.1 for free boundaries@Fig. 1~b!#
andt851.7560.1 for open boundaries@Fig. 2~b!#. We have
also checked that boundary conditions interpolating betw
free and open behave as the open case, i.e.,t8.1.75. In this
respect t8.1.75 reflects a more robust behavior of th
model, appropriate to any nonzero level of dissipation re
ized at the border.
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Finally we have verified that the introduction of bulk di
sipation (a,1/4) has no apparent effect on bulk and boun
ary exponents, as long asa.ac , as determined in Ref.@11#.
However, it is controversial@12,13# whether fora,1/4 the
model should be considered critical. An apparent critica
could result numerically from finite size effects.

Our results indicate that the mean-field OFC model w
open boundary conditions is correctly described by an in
mogeneous branching process@16#. This generalization of
the standard branching process has been recently prop
and studied as a paradigm for a more complete descriptio
SOC models in the mean-field limit. The inhomogeneo
branching process takes place in a situation in which tra
lation invariance is broken. An example is given by the g
ometry of a semi-infinite chain. Each site of the chain
volved in the process at a given stage of the process
activate its neighbors~and/or reactivate itself! at the subse-
quent stage with well defined probabilities. The probabil
of generating a tree~or avalanche! with s individuals be-
comes a function of the positionn51, . . . ,̀ where the tree
starts along a chain. It was shown exactly in Ref.@16# that
critical trees~avalanches! starting from the boundary are dis
tributed asP1(s)}s2t8, with t85 7

4, different from the bulk
exponentt5 3

2. Boundary sites were identified there as si
with an average number of branchings smaller than 1@17#,
reflecting in this way a sort of dissipative behavior. In th
respect open boundary conditions in our model correspon
the existence of these ‘‘dissipative’’ boundaries of the inh
mogeneous branching process. On the other hand, if the
erage number of branchings is maintained equal to 1 for
sites of the chain~including the end!, it is possible to verify
numerically that, in the inhomogeneous branching proc
the exponentt8 coincides with the bulk one~i.e., t8. 3

2 )
@18#. This case seems to be realized by our model with f

FIG. 1. Simulation results for~a! bulk and ~b! boundary ava-
lanches in a system with free boundary conditions. The system
is L5100 and the conservation parameter isa50.25. The esti-
mated exponents are~a! t51.4560.1 and~b! t851.460.1.
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boundary conditions. Thus, free conditions here seem
equate to keep at its critical bulk value~i.e., 1! the average
number of descendants for each generations occurring a
border, in the branching process underlying earthquake
namics.

In conclusion, we have shown how it is possible to intr
duce proper boundary effects at the level of a RN O
model. The model we have considered can also be in
preted as a 1D nearest-neighbor model with ‘‘` compo-
nents.’’ Indeed, the energies in a given column can
thought of as the many components of an energy vector
sociated to a single site of a 1D chain. Since we have alw
considered very largeL, our approach effectively corre
sponds to à -components limit of the 1D model.

We have verified that, with open boundary condition
boundary avalanches in the OFC model are distributed
P(s)}s27/4, as predicted by the analysis of the inhomog
neous branching process. Free boundary conditions, inst
correspond to ‘‘conservative’’ boundary conditions in the i
homogeneous branching process and implyt8.t.3/2.

As a prospective for future work, it would be interestin
to investigate whether the mechanism of invasion from
boundaries of the ‘‘self-organized’’ region~named ‘‘phase
locking’’ in Ref. @6#! is actually present also in the rando
neighbor OFC model with boundaries. We expect that als
the nearest-neighbor OFC model, boundary scalings diffe
from the bulk ones should be observed with appropriate c
ditions at the borders.

We acknowledge Claudio Tebaldi for many useful co
versations on the subject and for a critical reading of
manuscript.

FIG. 2. Results for~a! bulk and ~b! boundary avalanches in
system with open boundary conditions. System size areL
5100,200 and the conservation parameter isa50.25. The esti-
mated exponents are~a! t51.560.1 and~b! t851.7560.1.
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